Table of Contents
# See source for more details on input, output from the author
library(ggplot2)
library(reshape2)
library(plyr)
options(width=80)
dtf <- product.data$entity
agg <- product.data$eu_aggregates
trade <- product.data$trade

Explore Paper and Paperboard

\[\beta_1\]

Consumption, production, trade and net trade in the European Union

In the following file, we explore a data table containing Paper and Paperboard consumption data for 28 countries from 1961 to 2012. In 2012, the overall EU consumption, production and trade in million Tons per item was:

##                           Item Consumption Production Net_Trade Import Export
## 205 Total Paper and Paperboard          81         93        12     49     61
## 206                  Newsprint           7          8         0      5      5
## 207 Printing and Writing Paper          25         32         7     20     27
## 208 Other Paper and Paperboard          49         53         4     24     28
##     NA NA
## 205  0  0
## 206  0  0
## 207  0  0
## 208  0  0
#summary(agg)
ggplot(data=subset(agg, !Element%in%c("Import_Value", "Export_Value","Price"))) +  
    geom_line(aes(x=Year, y=Value/1e6, colour=Item),size=1) +
    facet_wrap(~Element) +
    ylab(paste("Million",product.data$metadata$unit)) + theme_bw()
## Warning: Removed 68 rows containing missing values (geom_path).
## Warning: Removed 68 rows containing missing values (geom_path).

plot of chunk consumptionTotalEU

Consumption at the country level

Apparent consumption of Paper and Paperboard by country

ggplot(data=dtf) +
    geom_line(aes(x=Year, y=Consumption/1e+06, colour=Item), size=1) + 
    facet_wrap(~Country, scales = "free_y") +
    xlab("Year") +
    ylab(paste("Million",product.data$metadata$unit)) + 
    theme_bw() +  theme(legend.position="bottom")

plot of chunk consumptionbyCountry

Prices

EU prices

Average trade price of Paper and Paperboard in the European Union

# Rename Price to Price USD (Use level because Element is a factor)
levels(agg$Element)[levels(agg$Element)=="Price"] <- "Price_real_USD"
ggplot(data=subset(agg, Element=="Price_real_USD")) +
    geom_line(aes(x=Year, y=Value, color=Item)) +
    ylab(paste("Price in (2010) constant USD /", product.data$metadata$unit))

plot of chunk priceEU

Comparison of nominal price in USD and real price in USD and EUR.

p <- dcast(agg, Year + Item ~ Element, value.var="Value")
# Add US and EUR deflator in the plot for information
p <- merge(p, EUR[c("Year", "DeflEUR")])
p <- merge(p, US[c("Year", "DeflUS")])
p <- mutate(p, 
            Price_Nominal_USD =  (Import_Value + Export_Value)/
                (Import_Quantity + Export_Quantity) *1000,
            Price_USD_2 = Price_EUR /ExchR)
p <- p[c("Year", "Item", "Price_Nominal_USD", "DeflUS", 
         "Price_real_USD", "DeflEUR", "ExchR", "Price_EUR")]
p <- melt(p, id=c("Year","Item"), variable.name="Element", value.name="Value")
ggplot(data=p) +
    geom_line(aes(x=Year, y=Value, color=Item)) +
        facet_wrap(~ Element, ncol=1, scales = "free_y")
## Warning: Removed 68 rows containing missing values (geom_path).
## Warning: Removed 68 rows containing missing values (geom_path).

plot of chunk priceComparison

Trade prices by country

Prices expressed in constant US dollars of 2010 per Tons.

Import_Price = Import_Value / Import_Quantity / DeflUS*1000
Export_Price = Export_Value / Export_Quantity / DeflUS*1000

Trade prices for the 9 countries which have the highest trade volume in 2012 (volumes are in Tons).

Country Net_Trade Price_EUR.Export Quantity.Export Value.Export Price_Trade.Export Price_EUR.Import Quantity.Import Value.Import Price_Trade.Import
1 United Kingdom -4928264.00 399.09 1190736.00 1660317.00 778.77 399.09 6119000.00 5904727.00 538.95
2 Italy -1677030.00 366.90 3074833.00 3288885.00 597.39 366.90 4751863.00 4157839.00 488.69
3 Poland -978110.00 359.07 2107532.00 1958435.00 519.00 359.07 3085642.00 2877239.00 520.79
4 France -955612.00 388.41 4295085.00 4530507.00 589.12 388.41 5250697.00 5084332.00 540.82
5 Belgium -732113.00 310.26 2462717.00 1923204.00 436.16 310.26 3194830.00 2628783.00 459.56
6 Germany 2592000.00 379.42 13523000.00 13531664.00 558.87 379.42 10931000.00 10529147.00 537.98
7 Austria 2750965.00 333.24 4128690.00 3453272.00 467.14 333.24 1377725.00 1305252.00 529.13
8 Sweden 9088984.00 353.03 9961805.00 9078691.00 509.00 353.03 872821.00 840398.00 537.76
9 Finland 9420792.00 350.46 9882541.00 8986250.00 507.86 350.46 461749.00 415011.00 501.98
ggplot(data=subset(trade, Country %in% countries)) +
    geom_line(aes(x=Year, y=Price_Trade, color=Item, linetype = Trade))+
    facet_wrap( ~ Country, ncol = 3) + 
    ylab(paste("Price in (2010) constant USD /", product.data$metadata$unit))

plot of chunk tradePricesByCountry

Plot log of the estimation data

We will estimate the model \[ log(Consumption) = \beta_0 + \beta_1 log(GDP) + \beta_2 log(Price) + \beta_3 log(Consumption_{t-1}) \]

Lets look at the relationship between log(Consumption) and log(GDP) first.

Total Paper and Paperboard

plot(log(Consumption) ~ log(GDPconstantUSD),
     data=dtf[grep("Total", dtf$Item),])
points(log(Consumption) ~ log(GDPconstantUSD), 
     data=dtf[grepl("Total", dtf$Item) & dtf$Year>2011,], col="red")

plot of chunk unnamed-chunk-1

Explore the influence of Year and Net_Trade by country

Sort countries by Net_Trade, then display a color for each country

dtf_last = dtf[grepl("Total", dtf$Item) & dtf$Year==max(dtf$Year),]
dtf_last = dtf_last[order(dtf_last$Net_Trade),]
dtf$Country = factor(dtf$Country, levels= dtf_last$Country, ordered=TRUE)
p = ggplot(dtf, aes(x=log(GDPconstantUSD), y=log(Consumption))) + facet_wrap(~Item)
p + geom_point(aes(alpha=Year, color=Country))  

plot of chunk unnamed-chunk-2